Equilibrium

1. This question is about ammonia, NH₃.

In industry, ammonia is made from nitrogen and hydrogen. This is a reversible reaction, as shown in **equilibrium 24.1** below.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

 $\Delta H = -92 \text{ kJ mol}^{-1}$

Equilibrium 24.1

i. Explain how le Chatelier's principle can be used to predict the conditions of temperature and pressure for a maximum **equilibrium** yield of ammonia.

ii. Using certain conditions, **equilibrium 24.1** has the equilibrium concentrations in the table.

Substance	Equilibrium concentration / mol dm ⁻³
N ₂ (g)	1.25
H ₂ (g)	2.75
NH₃(g)	0.862

Calculate the numerical value for K_c for **equilibrium 24.1** under these conditions.

Give your answer to an appropriate number of significant figures and in standard form.

2(a). The reaction of ammonia, NH₃, with oxygen to form nitrogen monoxide, NO, is an important industrial process.

The equation for this reaction is shown in **equilibrium 4.1** below. $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ $\Delta H = -905 \text{ kJ mol}^{-1}$ **Equilibrium 4.1**

Write an expression for the equilibrium constant, K_c , in **equilibrium 4.1**.

[1]

- (b). Predict the conditions of temperature and pressure for a maximum equilibrium yield of nitrogen monoxide in **equilibrium 4.1**.
 - Explain your prediction in terms of le Chatelier's principle.
 - State and explain how these conditions could be changed to achieve a compromise between equilibrium yield, rate and other operational factors.

 M

3. Nitrogen can be reacted with hydrogen in the presence of a catalyst to make ammonia in the Haber process.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92 \text{ kJ mol}^{-1}$

A mixture of N_2 and H_2 was left to react until it reached equilibrium. The equilibrium mixture had the following composition:

N ₂	1.20 mol dm ⁻³
H ₂	2.00 mol dm ⁻³
NH₃	0.877 mol dm ⁻³

i. Calculate a value for K_c for this equilibrium.

 $K_{\rm c} = \dots dm^6 \, {\rm mol}^{-2}$ [3]

ii. Explain how the following changes would affect the amount of NH₃ present in the equilibrium mixture.

Use of a catalyst:

A higher temperature:

4. A chemist investigates the equilibrium that produces methanol:

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

The chemist mixes CO(g) with $H_2(g)$ and leaves the mixture to react until equilibrium is reached. The equilibrium mixture is analysed and found to contain the following concentrations.

Substance	Concentration/mol dm ⁻³
CO (g)	0.310
H ₂ (g)	0.240
CH₃OH(g)	0.260

Calculate the numerical value of K_c for this equilibrium.

Give your answer to an **appropriate** number of significant figures.

 $K_{\rm c}$ = dm⁶ mol⁻² [2]

5(a). When potassium chromate(VI), K₂CrO₄, is dissolved in water an equilibrium is set up. The position of equilibrium is well to the left and the solution is a yellow colour. $2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(I)$ yellow orange

The addition of aqueous acid turns the solution an orange colour. Aqueous alkali is then added and the solution turns a yellow colour.

Explain these observations in terms of le Chatelier's principle.

(b). This question is about equilibrium and catalysts.

The equilibrium between N The two gases are differen	NO₂ and N₂O₄ gases is set nt in appearance. 2NO₂(g)	up in a gas syringe at room temperature. $\Delta H = -58 \text{ kJ mol}^{-1}$	
Using le Chatelier's princip appearance of the equilibr	ole, predict and explain hov ium mixture.	v the following changes would affect the	
i. The gas mixture i	is compressed by pushing	in the plunger of the gas syringe.	
			[2]
ii. The gas syringe i	s placed in a warm water b	path.	
			[2]

6(a). Sulfur trioxide, SO₃, is used for the industrial manufacture of sulfuric acid.

 SO_3 is produced by reacting sulfur dioxide, SO_2 , and oxygen, O_2 , as shown in **equilibrium 25.1** below.

Equilibrium 25.1 2SO₂(g) + O₂(g) ⇒2SO₃(g) ΔH = -197 kJ mol⁻¹

Le Chatelier' s principle can be used to predict how different conditions affect the equilibrium position.

- Using le Chatelier' s principle, show that a low temperature and a high pressure should be used to obtain a maximum **equilibrium** yield of SO₃.
- Explain why the actual conditions used in industry may be different from the conditions needed for a maximum equilibrium yield.

(b). Under certain conditions, K_c for equilibrium 25.1 is 0.160 dm³ mol⁻¹.

The equilibrium mixture under these conditions has the following concentrations of SO₂ and O₂.

Species	Equilibrium concentration / mol dm ⁻³
SO ₂	2.00
O2	1.20

- Using the value of *K*_c, explain whether the equilibrium position will be towards the right or towards the left under these conditions.
- Calculate the concentration of SO₃ in the equilibrium mixture.

7(a). State le Chatelier's principle.

(b). Methanol, CH₃OH, is an important feedstock for the chemical industry.

In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below.

 $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ $\Delta H = -49 \text{ kJ mol}^{-1}$

High pressures and low temperatures would give a maximum equilibrium yield of methanol.

i. Explain this statement in terms of le Chatelier's principle.

8 A student mixes hydrogen and iodine at room temperature and pressure and allows the mixture to reach . dynamic equilibrium.

$H_{a}(a) + I_{a}(a) \Longrightarrow 2HI(a)$	$\Lambda H = -9 \text{ k I mol}^{-1}$	oquilibrium 3.1
$1_{2}(g) + 1_{2}(g) \leftarrow 2_{1} \prod_{i=1}^{n} g_{i}$	$\Delta \Pi = -9$ KJ IIOI	equilibrium 3.1

_____[2]

i. A closed system is required for dynamic equilibrium to be established.

State one other feature of this dynamic equilibrium.

_____[1]

ii.	The student heats the equilibrium mixture keeping the volume constant.
	Predict how the composition of the equilibrium mixture changes on heating.
	Explain your answer.
	[2]
iii.	Predict and explain what effect, if any, an increase in the pressure would have on the position of the equilibrium.
	effect
	explanation
	[1]

9. The following reaction is used in industry to make sulfur trioxide gas, SO₃. $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g) \qquad \Delta H \ominus = -196 \text{ kJ mol}^{-1}$

This preparation is carried out in the presence of a catalyst.

* Explain the conditions of temperature and pressure that could be used to obtain the maximum equilibrium yield of sulfur trioxide. Discuss the importance of a compromise between equilibrium yield and reaction rate when deciding the operational conditions for this process.

[6]

10(a). This question looks at equilibrium reactions used by industry for preparing important chemicals.

Methanol can be manufactured by reacting carbon monoxide with hydrogen. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

An equilibrium mixture contains 3.10×10^{-3} mol dm⁻³ CO, 2.40×10^{-3} mol dm⁻³ H₂ and an unknown concentration of CH₃OH.

i. Write an expression for the equilibrium constant, K_c .

[1]

ii. The value of K_c for this equilibrium is 14.6 dm⁶ mol⁻².

Determine the equilibrium concentration methanol, CH₃OH(g).

Give your answer to three significant figures.

equilibrium concentration of CH₃OH(g) = dm⁶ mol⁻² [2]

(b).	Ammor equilibr	nia is used in the manufacture of nitric acid. The first stage of this process is a dynamic ium. $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$
	i.	When the temperature is increased, K_c for this reaction decreases. State the effect, if any, on the equilibrium yield of NO in this reaction. Explain your answer.
	 ii.	[1] Which element has been oxidised and which element has been reduced in the reaction? Include signs with the oxidation numbers.
		Oxidised

Reduced	Oxidation number change from to

[2]

END OF QUESTION PAPER